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SUMMARY

A new family of Monte Carlo schemes has been recently introduced for the numerical solution of
the Boltzmann equation of rare�ed gas dynamics (SIAM J. Sci. Comput. 2001; 23:1253–1273). After
a splitting of the equation the time discretization of the collision step is obtained from the Wild
sum expansion of the solution by replacing high-order terms in the expansion with the equilibrium
Maxwellian distribution. The corresponding time relaxed Monte Carlo (TRMC) schemes allow the use
of time steps larger than those required by direct simulation Monte Carlo (DSMC) and guarantee
consistency in the �uid-limit with the compressible Euler equations. Conservation of mass, momentum,
and energy are also preserved by the schemes. Applications to a two-dimensional gas dynamic �ow
around an obstacle are presented which show the improvement in terms of computational e�ciency
of TRMC schemes over standard DSMC for regimes close to the �uid-limit. Copyright ? 2005 John
Wiley & Sons, Ltd.

KEY WORDS: Boltzmann equation; Monte Carlo methods; time relaxed schemes; �uid-dynamic limit;
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1. INTRODUCTION

The mathematical model we consider is the kinetic Boltzmann equation for rare�ed gas
dynamics (RGD) which characterizes the temporal evolution of a particle density function
f(x; v; t) according to

@f
@t
+ v · ∇xf= 1� Q(f;f); x∈�⊂R3; v∈R3 (1)
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948 L. PARESCHI AND S. TRAZZI

supplemented with the initial condition

f(x; v; t=0)=f0(x; v) (2)

The non-negative density function f depends on position x∈R3, velocity v∈R3 and time
t¿0 and can depend on other independent variables like an internal energy [1].
In (1) the parameter �¿0 is called Knudsen number and it is proportional to the mean free

path between collisions. The bilinear collisional operator Q(f;f) which describes the binary
collisions between particles in a mono-atomic gas is given by

Q(f;f)(v)=
∫
R3

∫
S2
�(|v− v∗|; !)(f(v′)f(v′∗)− f(v)f(v∗)) d! dv∗ (3)

where for simplicity the dependence of f on x and t has been omitted.
In the previous expression ! is a vector of the unitary sphere S2 ⊂R3. The collisional

velocities (v′; v′∗) are associated to the velocities (v; v∗) and to the parameter ! by the relations

v′= 1
2 (v+ v∗ + |q|!); v′∗=

1
2 (v+ v∗ − |q|!) (4)

where q= v− v∗ is the relative velocity.
The kernel � is a non-negative function which characterizes the details of the binary in-

teraction between particles. In the case of a kth power forces inversely proportional to the
distance between particles, the kernel is

�(|q|; �)= b�(�)|q|� (5)

where �=(k−5)=(k−1) and � is the scattering angle between q and |q|!. The variable hard
sphere (VHS) model is often used in numerical simulation of rare�ed gases, and consists in
choosing b�(�)=C� with C� a positive constant. The case �=0 corresponds to a Maxwellian
gas, while �=1 is called a hard sphere gas.
In this paper we consider the multidimensional extension of the time relaxed Monte Carlo

(TRMC) methods recently introduced in Reference [2] and present a numerical comparison
with a classical direct simulation Monte Carlo (DSMC). Since TRMC methods are based
on a suitably time discretized Boltzmann equation we use as a DSMC comparison the time
discrete Nanbu–Babovsky (NB) [3, 4] method instead of Bird’s method [5].
Let us recall that the main di�erence between Bird and NB methods is that in NB scheme

particles can collide only once per time step, while in Bird’s scheme multiple collisions are
allowed. This has a profound in�uence on the time accuracy of the methods as well as on their
mathematical analysis. In fact, while the solution of the NB scheme converges in probability
to the solution of the time discrete Boltzmann equation [6], Bird’s method converges to the
solution of the time continuous Boltzmann equation [7].
A modi�ed version of TRMC which avoids the introduction of a time discretization error

and which is based on a recursive strategy has been recently presented in Reference [8]. A
comparison of the recursive TRMC method with Bird’s algorithm is actually under develop-
ment [9] and will be presented elsewhere.
The goal of TRMC methods is to construct simple and e�cient numerical methods for the

solution of the Boltzmann equation in regions with a large variation of the mean free path
[2, 10–13]. These methods are based on a splitting of the Boltzmann equation and on a time
discretization of the collision step [2, 14], which is robust in the �uid-limit.
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As a consequence the resulting TRMC methods have the following features:

• For large Knudsen numbers, the TRMC method behaves as a classical DSMC method.
In particular the sampling of new colliding particles is the same as in classical DSMC
methods.

• In the limit of the very small Knudsen number, the collision step replaces the distribution
function by a local Maxwellian with the same moments. The TRMC method will behave
as a stochastic kinetic scheme for the underlying Euler equations of gas dynamics [15].

• Mass, momentum, and energy are preserved.
Previous techniques for acceleration of DSMC close to �uid regimes, such as [16–19],

have divided the spatial region into two subregions: a �uid region in which the Euler or
Navier–Stokes equations are solved and an RGD region in which DSMC is used. The focus
of these methods has been to determine how best to choose the two domains and on design
of boundary conditions to couple the �uid and RGD regions. These coupling methods have
proved to be very useful, but they are still limited by their performance close to �uid regions,
where DSMC is slow but the �uid equations are inaccurate. In References [20, 21] an adaptive
mesh re�nement strategy has been included into DSMC to overcome some of the problems
introduced by small Knudsen numbers. We see these approaches as complementary strategies
to the uni�ed TRMC approach. For example to improve coupling based methods, it may make
sense to use a TRMC-like method in a near continuum region between the pure �uid and
pure DSMC regions.
After this introduction we will recall some basic facts about the Boltzmann equation and its

�uid-dynamic limit. Next in Section 3 we will discuss the problem of the time discretization
of the Boltzmann equation. Section 4 is devoted to a short description of the di�erent Monte
Carlo methods. Finally, in the last section we present the detailed numerical results of the
simulation of a two-dimensional �ow around an ellipse for several values of the mean free
path. The results show a marked improvement in the e�ciency of computations given by
TRMC for small Knudsen numbers.

2. PHYSICAL BACKGROUND

2.1. Collisional invariants and the Euler equations

Let f and � be such that
∫
R3 Q(f;f)�(v) dv exists. Then it is possible to show the identity

∫
R3
Q(f;f)�(v) dv=

1
2

∫
R3

∫
R3

∫
S2
f′f′

∗(�
′ + �′

∗ − �− �∗)�(|q|; !) dv dv∗ d! (6)

where f′=f(x; v′; t); f′
∗=f(x; v

′
∗; t).

If � is such that

�+ �∗=�′ + �′
∗

then the previous integral vanishes independently from the function f.
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More precisely �(v) is a linear combination of the elementary collisional invariants 1; v; |v|2,
which corresponds to the conservation of mass �, momentum �u and energy E

�=
∫
R3
f dv; �u=

∫
R3
fv dv; E=

1
2

∫
R3
f|v|2 dv (7)

The gas temperature is then recovered as

T =
1
3�

∫
R3
f(v− u)2 dv= 1

3�
(2E − u2) (8)

Now, if we consider the Boltzmann equation (1) and multiply it for 1; v; |v|2 by integrating
in v we obtain

@�
@t
+

3∑
i=1

@
@xi
(�ui) = 0 (9)

@
@t
(�uj) +

3∑
i=1

@
@xi
(�uiuj + pij) = 0; j=1; 2; 3 (10)

@
@t

(
1
2
�|u|2 + �e

)
+

3∑
i=1

@
@xi

[
�ui

(
1
2
|u|2 + e

)
+

3∑
j=1
uipij + qi

]
=0 (11)

These equation are the corresponding conservation laws for mass, momentum and energy.
Unfortunately the di�erential equations system is not closed, since it involves higher order
moments of the density function f.
Taking �= log(f) in (6) it is easy to show that the collisional operator is such that the

H-Theorem holds ∫
R3
Q(f;f) log(f) dv6 0 (12)

This condition implies that each function f in equilibrium (i.e. Q(f;f)=0) has locally the
form of a Maxwellian distribution

M (�; u; T )(v)=
�

(2�T )3=2
exp

(
−|u− v|2

2T

)
(13)

Formally as ” → 0 the function f is locally replaced by a Maxwellian. In this case it is
possible to compute f from its moments thus obtaining the closed Euler system of compress-
ible gas dynamics

@�
@t
+∇x · (�u) = 0

@(�u)
@t

+∇x · (�u⊗ u+ p) = 0 (14)

@E
@t
+∇x · (Eu+ pu) = 0

p=�T; E= 3
2 �T +

1
2 �|u|2
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More in general using for small values of ” the Chapman–Enskog expansion

f=M + ”f1 + ”2f2 + · · ·+ ”nfn
it is possible to obtain the compressible Navier–Stokes equations (at the order n=1) and
going further the Burnett system (at the order n=2). We refer to Cercignani [1] for more
details.

2.2. Boundary conditions

Typically, Equation (1) is completed with boundary conditions for x∈ @�. The boundary
conditions for mono-atomic gases are described by

|v · n(x)|f(x; v; t)=
∫
v′·n(x)¡0

|v′ · n(x)|K(x; v′ −→ v; t)f(x; v′; t) dv′ (15)

where n(x) is the inner normal vector in x of @� and the entering �ux is described by the
outgoing one modi�ed by the kernel K . Such de�nition of the boundary conditions preserve
the mass if

K(x; v′ −→ v; t)¿ 0;
∫
v·n(x)¿ 0

K(x; v′ −→ v; t) dv=1 (16)

The conditions most used are the Maxwellian ones, in which particles that collide with a
surface are remitted in local equilibrium with the same temperature of the object. This is just
an approximation of the true physical behaviour. More accurate descriptions are obtained if
a fraction � is absorbed by the obstacle and remitted with the object temperature, while the
remaining part 1− � is completely re�exed

f(x; v; t)= (1− �)Rf(x; v; t) + �Mf(x; v; t); x∈ @�; v · n(x)¿ 0 (17)

where

Rf(x; v; t)=f(x; v− 2n(x)(n(x) · v); t) (18)

Mf(x; v; t)=�(x; t)M!(v) (19)

If T! is the object temperature, then M! is determined by

M!= exp
(

− v2

2T!

)

while � is given by the conservation of the mass at the surface of the object

�(x; t)
∫
v·n(x)¿ 0

M!(v)|v · n(x)| dv=
∫
v·n(x)¡0

f(x; v; t)|v · n(x)| dv (20)

The coe�cient �, with 06 �6 1 is called absorption coe�cient. Di�usion with total
absorption by the surface (�=1) is the classical model used to describe the behaviour of
a mono-atomic gas, since � has been experimentally estimated to be close to 1.
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3. TIME RELAXED SCHEMES

The time integration of the Boltzmann equation represents a challenging problem, since the
nonlinear collision operator becomes highly sti� near the �uid regime (”� 1). An additional
limitation is given by the high computational cost required for evaluating the �vefold colli-
sional integral.

3.1. Time discretizations of the Boltzmann equation

The starting point is the usual �rst order splitting in time of (1), which consists of solving
separately a purely convective step (i.e. Q ≡ 0 in (1)) and a collision step characterized by
a space homogeneous Boltzmann equation (i.e. ∇xf ≡ 0 in (1)). Clearly, after this splitting,
almost all the main di�culties are contained in the collision step. For this reason, in what
follows we will �x our attention on the time discretization of the homogeneous Boltzmann
equation

@f
@t
=
1
”
Q(f;f) (21)

For example, let us consider the simple forward Euler scheme

fn+1 =fn +
�t
”
Q(fn; fn) (22)

which has been widely used in simulation. It leads to a stability condition which requires the
time step �t to be of order ”. Thus for small values of ” the scheme is unusable for practical
purposes. Clearly better stability properties can be obtained using fully implicit schemes.
However the computational di�culties related with the implicit evaluation of Q(f;f) make
this alternative unpracticable.

3.2. Wild sums and time relaxed discretizations

As proposed in Reference [14], a general idea for deriving robust numerical schemes, that
is, schemes that are unconditionally stable and preserve the asymptotic of the �uid-dynamic
limit, for a nonlinear equation like (21), is to replace high-order terms of a suitable well-posed
power series expansion by the local equilibrium. Here we brie�y recall the schemes. For more
details we refer the reader to References [10, 14].
Let us consider a di�erential system of the type

@f
@t
=
1
”
[P(f;f)− 	f] (23)

with the same initial condition (2), and where 	 �= 0 is a constant and P a bilinear operator.
Now, the solution to the Cauchy problem for (23) can be expressed in the form of a power

series

f(v; t)= e−	t=”
∞∑
k=0
(1− e−	t=”)kfk(v) (24)
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where the functions fk are given by the recurrence formula

fk+1(v)=
1

k + 1

k∑
h=0

1
	
P(fh; fk−h); k=0; 1; : : : (25)

The method was originally developed by Wild [22] and Carlen et al. [23] to solve the
Boltzmann equation for Maxwellian molecules. In Reference [14], the method has been ex-
tended to take into account more general hypothesis on P. In the case of the Boltzmann
equation, that is P(f;f)=Q(f;f) + 	f formally we have that

lim
k→∞

fk(v)= lim
t→∞ f(v; t)=M (v)

where M (v) is the local Maxwellian equilibrium.
Using this remark, in Reference [14], the following class of numerical schemes, based on

a Maxwellian truncation for m¿ 1 of (24), has been constructed

fn+1(v)= e−	�t=”
m∑
k=0
(1− e−	�t=”)kfnk (v) + (1− e−	�t=”)m+1M (v) (26)

where fn=f(n�t) and �t is a small time interval. It can be shown that the schemes obtained
in this way are of order m in time.
Furthermore, we have [14] the following properties for P(f;f)=Q(f;f) + 	f:

(i) Conservations: ∫
R3
P(f;f)�(v) dv=	

∫
R3
f�(v) dv (27)

and ∫
R3
fn+1�(v) dv=

∫
R3
fn�(v) dv (28)

for �(v)=1; v; |v|2.
(ii) Asymptotic preservation (AP):

For any m¿ 1, we have

lim
	�t=”→∞

fn+1 =M (v) (29)

In the case of the Boltzmann equation if we denote by Q ��(f;f) the collision operator where
the collision kernel � has been replaced by the bounded one � ��(v; v∗)= max{�(v; v∗); ��},
where ��¿0 is a constant, we have

P ��(f;f)=Q ��(f;f) + 	f¿ 0

for 	=4� ���.
Under this assumption, which is numerically essential, the solution provided by TR schemes

is also non negative.
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Remark 3.1
We point out that for m=0 TR schemes are equivalent to the exact solution in a time step
�t of the space homogeneous BGK approximation of the Boltzmann equation.

Remark 3.2
The method described can be generalized by using di�erent weight function, with the goal of
�nding a best approximation for the highest order coe�cients of Wild sum expansion (24).
In general this schemes can be written in the form

fn+1 =
m∑
k=0
Akfk + Am+1M (30)

where the coe�cient fk are determined by (25).
The weights Ak =Ak(t) are not negative functions which satisfy

(i) Consistency:

lim

→0

A1(
)=
=1; lim

→0

Ak(
)=
=0; k=2; : : : ; m+ 1 (31)

(ii) Conservations:

m+1∑
k=0
Ak =1; 
∈ [0; 1] (32)

(iii) Asymptotic preservation (AP):

lim

→1

Ak(
)=0; k=0; : : : ; m (33)

A possible choice of function satisfying the above conditions is

Ak =(1− 
)
k ; k=0; : : : ; m; Am+1 = 
m+1 (34)

which correspond to scheme (26).
A better choice of parameter has been presented in Reference [10]

Ak = (1− 
)
k ; k=0; : : : ; m− 1 (35)

Am =1−
m∑
k=0
Ak − Am+1; Am+1 = 
m+2 (36)

that correspond to consider fm+1 =fm; fk =M; k¿m+ 2 in (24).
We emphasize that other choices of parameters are possible, and the individuation of the

optimal ones is an open problem. Some interesting results for Maxwellian molecules have
been obtained recently in Reference [24].
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4. TRMC METHODS

In this section, we describe the TRMC method for the evolution of the density function f.
We shall include the description of the classical DSMC no-time counter algorithm, so that it
will be easier to make a comparison between the new formulation and the previous one.

4.1. The Nanbu–Babovsky DSMC method

Here we will describe the classical DSMC method in the general framework we have intro-
duced in the previous sections. More speci�cally, we consider the Nanbu–Babovsky algorithm
[3, 4]. The convergence of this scheme has been proved by Babovsky and Illner [6].
In the sequel we will implicitly assume that the collision kernel in the Boltzmann equation

has been replaced by the bounded one. For simplicity of notations we will omit the subscript
�� when referring to Q ��(f;f) and P ��(f;f).
The Boltzmann equation can be written in the form

@f
@t
=
1
�
[P(f;f)− 	f] (37)

We assume that f is a probability density; i.e.

�=
∫
R3
f(v; t) dv=1

Let us discretize time and denote by fn(v) an approximation of f(v; n�t). The forward
Euler scheme applied to (37) is written as

fn+1 =
(
1− 	�t

�

)
fn +

	�t
�
P(fn; fn)

	
(38)

Note that for bounded collision kernels P(f;f)=	¿ 0 if 	=4� �� and thus by mass conser-
vation is a probability density. Note also that P(f;f)=	=f1 that is the �rst term in the Wild
expansion.
Thus the equation has the following probabilistic interpretation. To sample one particle

from fn+1, with probability (1− 	�t=�) we sample the particle from fn and with probability
	�t=� we sample the particle from P(fn; fn)(v)=	.
We remark here that this probabilistic interpretation of (38) breaks down if �t=� is too

large because the coe�cient of fn on the right-hand side may become negative. This implies
that the time step becomes extremely small when approaching the �uid-dynamic limit. There-
fore Nanbu–Babowski method becomes almost unusable near the �uid regime. We refer to
Reference [25] for a more detailed discussion on the time step limitations of standard DSMC
methods.
The essential feature of the Monte Carlo method is the way particles are sampled from

P(f;f)=	. This is done with the aid of an acceptance–rejection technique combined with a
collision strategy of the samples. In its �rst version, Nanbu’s algorithm was not conservative;
i.e. energy and momentum were conserved only in the mean but not at each collision. A
conservative version of the algorithm was introduced by Babovsky [4]. Instead of selecting
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single particles, independent particle pairs are selected, and conservation is maintained at each
collision.
The algorithm for evolving the density up to time t= nTOT�t is the following.

Algorithm 4.1 (DSMC for VHS molecules)
• compute the initial velocity of the particles, {v0i ; i = 1; : : : ; N},
by sampling them from the initial density f0(v)

• for n = 1 to nTOT
given {vni ; i = 1; : : : ; N},

◦ compute an upper bound �� for the cross-section
◦ set 	 = 4� ��
◦ set Nc = Iround(	N�t=(2�))
◦ select Nc dummy collision pairs (i; j) uniformly
among all possible pairs, and for those
◦ compute the relative cross-section �ij = �(|vi − vj|)
◦ if ��Rand¡ �ij

– perform the collision between i and j, and
compute v′i and v′j according to the collisional law

– set vn+1i = v′i , v
n+1
j = v′j

else
– set vn+1i = vni , v

n+1
j = vnj

◦ set vn+1i = vni for the N − 2Nc particles that have not been selected
end for

Remark 4.1
The terminology ‘dummy collision’ is here used to denote a �ctitious collision between two
particles which undergo the acceptance–rejection procedure. Sometimes other authors refer to
these kind of collisions as ‘trial collision’ or ‘candidate collision’.

During each step, all the other N − 2Nc particle velocities remain unchanged. Here, by
Iround(x), we denote a suitable integer rounding of a positive real number x. In our algorithm,
we choose

Iround(x) =

{
[x] with probability [x] + 1− x
[x] + 1 with probability x − [x]

where [x] denotes the integer part of x.
The post-collisional velocities are computed through relations

v′i =
vi + vj
2

+
|vi − vj|
2

!; v′j =
vi + vj
2

− |vi − vj|
2

! (39)
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where ! is chosen uniformly in the unit sphere, according to

!=

⎛
⎜⎜⎝
cos � sin �

sin � sin �

cos �

⎞
⎟⎟⎠ ; �= arccos(2�1 − 1); �=2��2 (40)

and �1; �2 are uniformly distributed random variables in [0; 1].
The upper bound �� should be chosen as small as possible, to avoid ine�cient rejection,

and it should be computed fast.
An upper bound can be derived taking �� as

��= max
vi ;vj

�(|vi − vj|) (41)

However this computation would require O(N 2) operations. Thus it is preferable to use an
upper bound of (41) given by

��=�(2�v); �v= max
i

|vi − �v|; �v=
∑
i
vi=N (42)

Remark 4.2
Note that if the time step is small enough, only a small fraction of particles, let us say Nc,
will collide. The computational cost of the collisions is therefore O(Nc). On the other hand,
the cost of the computation of the upper bound �� is O(N ), which may be much larger than
O(Nc). A possible way to overcome this di�culty is to update at each time step the value of
the upper bound �� only if it increases. This may be done as follows. During the computation
of the collision between particles i and j, let ṽi and ṽj denote the new particle velocities.
Then the quantity �v is updated according to

�v= max(�v; |ṽi − �v|; |ṽj − �v|) (43)

At the end of the collision loop, the upper bound on the cross-section is computed as

��=�(2�v)

In space non-homogeneous calculations, assuming that there are several collisional time
steps during a convection time step, the bound can be computed according to (42) the �rst
time step and then updated as described above.

4.2. First- and second-order TRMC methods

The �rst-order TRMC algorithm is based on the TR schemes

fn+1 =A0fn + A1f1 + A2M (44)

The probabilistic interpretation of the above equation is the following. To sample a particle
from fn+1, with probability A0 we sample the particle from fn, with probability A1 we sample
the particle from f1 =P(f;f)=	 (as in standard DSMC method) and with probability A2 we
sample the particle from a Maxwellian.
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In this formulation, the probabilistic interpretation holds uniformly in 	�t=�, at variance
with standard DSMC, which requires 	�t=�¡1. Furthermore, as 	�t=� → ∞, the distribution
at time n+1 is sampled from a Maxwellian. In this limit, the density fn+1 relaxes immediately
to its equilibrium distribution. In a space non-homogeneous case, this would be equivalent to
a particle method for Euler equations proposed by Pullin [15].
The Monte Carlo schemes described above are conservative in the mean. It is possible

to make it exactly conservative by selecting collision pairs uniformly, rather than individual
particles, and by using a suitable algorithm for sampling a set of particles with prescribed
momentum and energy from a Maxwellian. To this aim one can adopt the original algorithm
proposed by Pullin [26]. An alternative and simpler method consists in rescaling the particles
sampled from the Maxwellian in order to have exact preservation of the moments.
Suppose that we want to sample NM particles by a Maxwellian with mean velocity u and

energy E. First we have to sample the particles vi, i=1; : : : ; NM from a Gaussian density. To
sample two of this particles vi; vj we can use the Box–Muller method

vi= u+
√
2T� cos(�i); vj= u+

√
2T� sin(�i)

with T given by (8) and

�=
√

− log(�1); �i=2��2

where �1, �2 are uniformly distributed random variables in [0; 1].
Let now

v=
1
N

n∑
i=1
vi; E′=

1
2N

n∑
i=1
v2i

be the mean velocity and energy of the sampled particles (we �x for simplicity the mass of
a single particle m=1). We want to rescale the samples using a scalar 
 and a vector � such
that

1
N

N∑
i=1

vi − �



= u (45)

and

1
2N

N∑
i=1

(vi − �)2

2

=E (46)

Solving the system we obtain


2 =
(
E′ − v2

2

)/(
E − u2

2

)
(47)
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and

�= v− 
u (48)

Note that the right-hand side of Equation (47) is non negative and thus the system admits
always a solution.

Remark 4.3
Since the vi are normally distributed and the transformation v′i =(vi−�)=
 is linear, the rescaled
velocities v′i remain normally distributed.

The conservative version of the methods can be formalized in the following
algorithm.

Algorithm 4.2 (�rst-order TRMC for VHS molecules)
• compute the initial velocity of the particles, {v0i ; i = 1; : : : ; N},
by sampling them from the initial density f0(v)

• for n = 1 to nTOT
given {vni ; i = 1; : : : ; N},

◦ compute an upper bound �� of the cross-section
◦ set 
 = 1− exp(−� ���t=�)
◦ compute A1(
), A2(
)
◦ set Nc = Iround(NA1=2)
◦ perform Nc dummy collisions, as in Algorithm 4.1
◦ set NM = Iround(NA2)
◦ select NM particles among those that have not collided,
and compute their mean momentum and energy

◦ sample NM particles from the Maxwellian with the above
momentum and energy, and replace the NM selected particles
with the sampled ones

◦ set vn+1i = vni for all the N − 2Nc − NM particles that
have not been selected

end for

A second-order Monte Carlo scheme is obtained by the TR scheme

fn+1 =A0fn + A1f1 + A2f2 + A3M (49)

with

f1 =
P(fn; fn)

	
; f2 =

P(fn; f1)
	

Given N particles distributed according to fn, the probabilistic interpretation of scheme 49 is
the following: NA0 particles will not collide; NA1 will be sampled from f1 (as in the �rst-order
scheme); NA2 will be sampled from f2; i.e. NA2=2 particles sampled from fn will undergo
dummy collisions with NA2=2 particles sampled from f1; and NA3 particles will be sampled
from a Maxwellian.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:947–983



960 L. PARESCHI AND S. TRAZZI

Once again, the methods can be made conservative using the same techniques adopted in
the �rst-order scheme. The various steps of the method can be summarized in the following
algorithm.

Algorithm 4.3 (second-order TRMC for VHS molecules)
• compute the initial velocity of the particles, {v0i ; i = 1; : : : ; N},
by sampling them from the initial density f0(v)

• for n = 1 to nTOT
given {vni ; i = 1; : : : ; N},

◦ compute an upper bound �� of the cross-section
◦ set 
 = 1− exp(−� ���t=�)
◦ compute A1(
), A2(
), A3(
)
◦ set N1 = Iround(NA1=2), N2 = Iround(NA2=4)
◦ select N1 + N2 dummy collision pairs (i; j) uniformly
among all possible pairs

◦ for N1 pairs
– compute the relative cross-section �ij = �(|vi − vj|)
– if ��Rand¡ �ij

◦ perform the collision between i and j, and
compute v′i and v′j according to the collisional law

◦ set vn+1i = v′i , v
n+1
j = v′j

◦ for N2 pairs
– compute the relative cross-section �ij = �(|vi − vj|)
– if ��Rand¡ �ij

◦ perform the collision between i and j,
compute v′i and v′j according to the collisional law and
store them

◦ select 2N2 particles from fn

◦ perform the collision of these selected particles with the
second set of 2N2 particles that have collided once

◦ update the velocity of the 4N2 particles with the outcome
of the 2N2 collisions (of particles that have never collided
before with particles that collided once)

◦ set NM = Iround(NA3)
◦ replace NM particles with samples from Maxwellian, as in Algorithm 4.2
◦ set vn+1i = vni for all the N − 2N1 − 4N2 − NM particles that
have not been selected

end for

Similarly, higher order TRMC methods can be constructed. For example, a third-order
scheme is obtained from

fn+1 =A0fn + A1f1 + A2f2 + A3f3 + A4M (50)

with

f1 =
P(fn; fn)

	
; f2 =

P(fn; f1)
	

; f3 =
1
3	
[2P(fn; f2) + P(f1; f1)]
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We omit for brevity the details of the resulting Monte Carlo algorithm. We remark here that
the TR scheme is a direct consequence of the time discretization of the Boltzmann equation. In
this respect, the choice of a particular Monte Carlo scheme used to model the collision is not
crucial. Here we considered a commonly used Monte Carlo scheme. If a di�erent technique
is used to model the collision, then the same technique could be used in conjunction with the
TR discretization.

5. NUMERICAL RESULTS

In this section we compare DSMC and TRMC methods on a two-dimensional space non
homogeneous test problem. We will refer to �rst- and second-order TRMC methods as TRMC
I and TRMC II, respectively.
The physical problem we will study is represented by a rare�ed gas �ow around an elliptical

section of an object. The rectangular domain � has been divided into a regular grid of cells.
If we assume that in each cell the density is constant during the collision step, we can apply
the algorithms previously seen. This is physically equivalent to say that each particle can
collide only with particles of the same cell.

5.1. Free transport

In a spatial homogeneous case we supposed that the density function to be a probability
function, that is with unitary mass. In spatially non-homogeneous cases the integral in the
velocity determines the gas density number∫

R3
f(x; v; t) dv=

�
m

(51)

where m is a gas molecule mass. The algorithms seen in the previous sections can be modi�ed
considering

	=4� ���=m (52)

The density � is proportional to the number of particles in each cell j

�j=Njm∗ (53)

where m∗ is the mass of the particles used in the simulation.
The transport step is made easily applying to each particle i

x′
i = xi + vi�t (54)

5.2. Particle–surface interaction

At the surface of the obstacle the particles are absorbed and remitted in according with the
Maxwellian distribution of a gas at the same temperature of the object.
To compute the new ingoing velocity we must sample an ingoing particle from the �ux

corresponding to a Maxwellian with zero mean velocity and at the temperature of the wall.
We describe here the method we used in the case of a two-dimensional elliptic object.
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Let �t∗ be the time of free �ow of the particle before colliding the object (which can
be computed analytically for simple geometries such as the case of circular or elliptical
objects, or using a suitable numerical method for more general geometries). The contact point
particle-object will then be

x∗
i = xi + vi�t

∗

There are several ways to calculate the new position and velocity of a particle after a
collision with the boundary. For example, if vM =(vxM ; v

y
M ; v

z
M ) is the velocity sampled by

the Maxwellian �ux corresponding to the thermal equilibrium gas-obstacle and {k; n; t} is the
orthogonal set of unitary vectors that characterize, respectively, the z-axis, the normal and
the tangent to the surface at the contact point, then the new outgoing velocity of the particle
will be

v′i = |vxM |n+ vyM t + vzMk (55)

and its position will be determined by

x′
i = x

∗
i + v

′
i(�t −�t∗) (56)

where x∗
i is the contact point and �t is the time step.

5.3. Two-dimensional �ow past an ellipse

In our calculations, the upstream state is characterized by a Mach number M with

�=1:0; T =5:0; Tobj = 10:0

where T and Tobj are, respectively, the gas and the object temperature. The upstream mean
velocity is then given by

ux= −M
√
(
T ); uy=0; uz=0

with 
= 5
3 since we have considered a three-dimensional monatomic gas in velocity space.

The in�nite physical space is truncated to the �nite region [0; 1:5]× [0; 1:2]. We report the
results obtained with the di�erent schemes using 75× 60 space cells and 30 particles ingoing
in each downstream cell.
Since we are computing a stationary solution after a �xed initial time, we can strongly

improve the accuracy of the Monte Carlo solution by averaging in time the solution itself. In
all our simulations we report the results obtained after averaging the solution over 400 time
steps after a su�ciently large computational time has been reached. As a reference solution
to estimate the relative L2-error norms we used 50 particles per cell and 2000 averages with
DSMC.
The collisional time step in DSMC has been computed adaptively cell by cell to satisfy the

stability condition. At variance in TRMC the collisional time step has been taken C�t, where
C6 1 is a constant and �t is the free �ow time step. In the graphs reporting the number
of collisions in time we have considered the sampling from a Maxwellian in TRMC like a
collision. We refer to Reference [27] for similar results on DSMC computations of �ows past
an ellipse.
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Figure 1. Iso-values of the density � (left) and mean velocity u (right) for �=0:1 and M =5;
DSMC (top), TRMC I (middle), TRMC II (bottom).
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Figure 2. Longitudinal and transversal sections of density and velocity (left) and relative errors (right)
at y=6 and x=5, respectively, for �=0:1 and M =5; DSMC (◦), TRMC I (+), TRMC II (×).
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Figure 3. Iso-values of the density � (left) and mean velocity u (right) for �=0:01 and M =5;
DSMC(top), TRMC I (middle), TRMC II (bottom).
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Figure 4. Longitudinal and transversal sections of density and velocity (left) and relative errors (right)
at y=6 and x=5, respectively, for �=0:01 and M =5; DSMC (◦), TRMC I (+), TRMC II (×).
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Figure 5. Iso-values of the density � (left) and mean velocity u (right) for �=0:001 and M =5;
DSMC (top), TRMC I (middle), TRMC II (bottom).
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Figure 6. Longitudinal and transversal sections of density and velocity (left) and relative errors (right)
at y=6 and x=5, respectively, for �=0:001 and M =5; DSMC (◦), TRMC I (+), TRMC II (×).
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Figure 7. Iso-values of the density � (left) and mean velocity u (right) for �=0:1 and M =10;
DSMC (top), TRMC I (middle), TRMC II (bottom).
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Figure 8. Longitudinal and transversal sections of density and velocity (left) and relative errors (right)
at y=6 and x=5, respectively, for �=0:1 and M =10; DSMC (◦), TRMC I (+), TRMC II (×).
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Figure 9. Iso-values of the density � (left) and mean velocity u (right) for �=0:01 and M =10;
DSMC (top), TRMC I (middle), TRMC II (bottom).
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Figure 10. Longitudinal and transversal sections of density and velocity (left) and relative errors (right)
at y=6 and x=5, respectively, for �=0:01 and M =10; DSMC (◦), TRMC I (+), TRMC II (×).
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Figure 11. Iso-values of the density � (left) and mean velocity u (right) for �=0:001 and M =10;
DSMC (top), TRMC I (middle), TRMC II (bottom).
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Figure 12. Longitudinal and transversal sections of density and velocity (left) and relative errors (right)
at y=6 and x=5, respectively, for �=0:01 and M =10; DSMC (◦), TRMC I (+), TRMC II (×).
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Figure 13. Iso-values of the density � (left) and mean velocity u (right) for �=0:1 and M =20;
DSMC (top), TRMC I (middle), TRMC II (bottom).
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Figure 14. Longitudinal and transversal sections of density and velocity (left) and relative errors (right)
at y=6 and x=5, respectively, for �=0:1 and M =20; DSMC (◦), TRMC I (+), TRMC II (×).
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Figure 15. Iso-values of the density � (left) and mean velocity u (right) for �=0:01 and M =20;
DSMC (top), TRMC I (middle), TRMC II (bottom).
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Figure 16. Longitudinal and transversal sections of density and velocity (left) and relative errors (right)
at y=6 and x=5, respectively, for �=0:01 and M =20; DSMC (◦), TRMC I (+), TRMC II (×).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:947–983



NUMERICAL SOLUTION OF THE BOLTZMANN EQUATION 979

0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

DSMC Method

0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

DSMC Method

0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

TRMC1 Method

0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

TRMC1 Method

0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

TRMC2 Method

0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

TRMC2 Method

Figure 17. Iso-values of the density � (left) and mean velocity u (right) for �=0:001 and M =20;
DSMC (top), TRMC I (middle), TRMC II (bottom).
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Figure 18. Longitudinal and transversal sections of density and velocity (left) and relative errors (right)
at y=6 and x=5, respectively, for �=0:001 and M =20; DSMC (◦), TRMC I (+), TRMC II (×).
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Figure 19. Number of ‘collisions’ in time, respectively, for M =1 (left), M =10 (centre), M =20
(right). From top to bottom �=0:1; 0:01; 0:001; DSMC (◦), TRMC I (+), TRMC II (×).

We studied the dynamic of the gas for di�erent ranges of the Knudsen number and di�erent
values of the Mach number. The isovalues of the density and mean velocity for each test case
has been reported. For each value of the Mach number ranging from 5; 10; 20 the �rst example
shows the case of a very rare�ed gas (i.e. �=0:1) the second the intermediate regime (i.e.
�=0:01) and the last closer to the �uid regime (i.e. �=0:001) (Figures 1–19).
In the rare�ed regime we cannot expect any computational gain of TRMC with respect

to DSMC. The numerical results obtained for C=1 in TRMC with the di�erent schemes
are very similar as well as the e�ciency (see Figure 12 left). As expected the sections
along the lines x=5 and y=y emphasize the higher accuracy obtained with TRMC II (see
Figures 2, 4, 6).
For the intermediate regime we have considered the solutions obtained by TRMC with a

collisional time of one third of the free �ow time (C=1=3). Again the solutions are compa-
rable, with an improvement obtained by TRMC II, but with a better computational e�ciency
in TRMC methods (TRMC I is almost two times faster then DSMC, see Figure 12 centre).
The plots of the sections (see Figures 8, 10, 14).
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Finally, the last example is near the �uid regime. The improvement of TRMC with C=1=5
over DSMC is clearly evident. The same degree of accuracy is reached with a speed up of
computing time of approximatively 10 times for TRMC I and approximatively 5 times for
TRMC II.
For lower values of � the DSMC method becomes unusable due to the increasing number

of collisions, while the computational cost of TRMC reaches a constant value which depends
only from the number of particles used in the simulation.

6. CONCLUSION

We have presented a Monte Carlo method which is suitable for the numerical simulation
of the Boltzmann equation close to �uid regimes. In such �uid limit the methods become a
kinetic particle scheme for the Euler equations and result in a greater e�ciency if compared to
standard DSMC schemes. The methods presented in this paper have limited accuracy in time
and for such reason have been compared to Nambu version of DSMC. A recursive TRMC
method that does not contain time discretization error is currently under development [9].
Numerical comparison of this last method with Bird’s DSMC algorithm will be presented
elsewhere.
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